
Design and Implementation

Distributed NrOS (DiNOS) Architecture

The control plane consists of
one ckernel (control kernel)
based on NrOS [1] and a
scheduler built using DCM
(Declarative Cluster
Management) [3].

 The scheduler uses DCM
to encode the scheduling
problem as an optimization
problem.

 A process (gold) may be
assigned to use resources
from different dkernels.

Preliminary Microbenchmark: map()

Designing an Operating System for Disaggregation with Coherence

Introduction
Disaggregation:

o Assign resources as needed
o Useful for utilization, scaling, failure domains, etc.
o RDMA, CXL 1.0, etc. for memory disaggregation

[1] A. Bhardwaj et al. NrOS: Effective replication and sharing in an operating system. In OSDI, 2021.
[2] I. Calciu et al. Black-box concurrent data structures for NUMA architectures. SIGPLAN Not., 52(4), 2017.
[3] L. Suresh et al. Building scalable and flexible cluster managers using declarative programming. In OSDI, 2020 .

Goals

With disaggregation, resource
management tasks are not constrained
by a single host. Should the OS also go

beyond a single host?

The data plane consists of
one or more dkernels (data
kernels) based on NrOS [1].

 Log replicas (similar to NR
[2]) are used to keep process
state consistent.

 Dkernel resources (cores,
slices of memory) are
assigned to processes by the
control plane.

 Control operations are
forwarded via RPCs using
shared memory queues.

Host 1

Figure 1. A rack with hardware accelerated memory coherence.

Mem. Region

Fast Interconnects

Figure 3. Throughput of map() in million operations per second for 1, 2, and 4
dkernels for DiNOS (distributed NrOS) compared to NrOS with 1, 2, and 4 log replicas
as the number of data plane cores (x-axis) increases.

…

1

2

3

An Operating System for Disaggregation with Coherence
Erika Hunhoff (Student)

University of Colorado Boulder

Gerd Zellweger
Feldera (work performed at VMware Research)

Eric Keller
University of Colorado Boulder

Host n

Mem. Region

…
…

Future Work
o Optimization & benchmarking
o Dynamic log replication

References

Figure 2. Architecture of distributed OS for disaggregated coherent memory.

…

Host 0

Control Kernel

Top-Level Scheduler

TCP

Fast In
terco

n
n

ects

Key: Process 1

4

Host 1

…

Data Kernel 1
Proc
Log

2

RPC
Client

NrLog1 3

Host n

…

Data Kernel n
Proc
Log

RPC
Client

NrLog

RPC
Server

RPC
Client

Mem
FS

2nd
Sched

NrLog

DCM
RPC

Client
DB

5

4

5

• Use coherent shared memory to support the OS,
not just applications

◇ Hardware Advances

• Allow a process to scale beyond the bounds of a
single host for both compute and memory

◇ Scalability

• Support on-demand allocation for both compute
and memory

• Co-locate process resources when possible

◇ Scheduling & Locality

• Run largely unmodified Unix binaries

• Does not require bespoke framework

• Transparent scaling (application hints?)

◇ Prioritize Usability

• Written in Rust, extends NrOS [1]

• Emulated: QEMU & QEMU shared memory

◇ Implementation

	Slide 1

