An Operating System for Disaggregation with Coherence

Erika Hunhoff (student)

Gerd Zellweger

Eric Keller

@ University of Colorado Boulder

Introduction
Disaggregation:

o Assign resources as heeded
o Useful for utilization, scaling, failure domains, etc.
o RDMA, CXL 1.0, etc. for memory disaggregation

| Fast Interconnects I

Figure 1. A rack with hardware accelerated memory coherence.

With disaggregation, resource
management tasks are not constrained
by a single host. Should the OS also go

beyond a single host?

Goals

<& Hardware Advances

* Use coherent shared memory to support the OS,
not just applications

<& Scalability

* Allow a process to scale beyond the bounds of a
single host for both compute and memory

<& Scheduling & Locality

* Support on-demand allocation for both compute
and memory

* Co-locate process resources when possible

‘N

Feldera (work performed at VMware Research)

% University of Colorado Boulder

Distributed NrOS (DiNOS) Architecture

The data plane consists of
one or more dkernels (data
kernels) based on NrOS [1].

Data Kernel 1

Proc RPC

0 Log replicas (similar to NR
[2]) are used to keep process
state consistent.

e Dkernel resources (cores,
slices of memory) are

assigned to processes by the
control plane.

Data Kernel n

Proc RPC
-

LU

e Control operations are
forwarded via RPCs using
shared memory queues.

Key: Process1 J

The control plane consists of
one ckernel (control kernel)
based on NrOS [1] and a
scheduler built using DCM
(Declarative Cluster
Management) [3].

Control Kernel
RPC RPC
Server Client
Mem 2nd

FS Sched

Q The scheduler uses DCM
to encode the scheduling
problem as an optimization
problem.

$109UU02J3]U] 1Se

Top-Level Scheduler

NCM RPC
Client

e A process (gold) may be
assigned to use resources

from different dkernels.

Figure 2. Architecture of distributed OS for disaggregated coherent memory.

Preliminary Microbenchmark: map ()

—= DINOS1 DINOS2 DINOS4 NrOS1 =@ NrOS2 =@ NrOS4
‘n
a
o 1.00
=
- W.\‘_.
—
Q e
S 0.80 ‘N—\-g
—
O
< 0.70

1 8 16 24 32 40 48 56 64 72 80 88 96

Number of Application Cores

Figure 3. Throughput of map () in million operations per second for 1, 2, and 4

dkernels for DiNOS (distributed NrOS) compared to NrOS with 1, 2, and 4 log replicas
as the number of data plane cores (x-axis) increases.

References

1] A. Bhardwaj et al. NrOS: Effective replication and sharing in an operating system. In OSDI, 2021.

] I. Calciu et al. Black-box concurrent data structures for NUMA architectures. SIGPLAN Not., 52(4), 2017.

3] L. Suresh et al. Building scalable and flexible cluster managers using declarative programming. In OSDI, 2020.

Design and Implementation

<& Prioritize Usability

* Run largely unmodified Unix binaries
* Does not require bespoke framework
* Transparent scaling (application hints?)

< Implementation

* Written in Rust, extends NrOS [1]}
* Emulated: QEMU & QEMU shared memory

Future Work

o Optimization & benchmarking
o Dynamic log replication

	Slide 1

