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Introduction
Disaggregation:

o Assign resources as heeded
o Useful for utilization, scaling, failure domains, etc.
o RDMA, CXL 1.0, etc. for memory disaggregation
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Figure 1. A rack with hardware accelerated memory coherence.

With disaggregation, resource
management tasks are not constrained
by a single host. Should the OS also go

beyond a single host?

Goals

<& Hardware Advances

* Use coherent shared memory to support the OS,
not just applications

<& Scalability

* Allow a process to scale beyond the bounds of a
single host for both compute and memory

<& Scheduling & Locality

* Support on-demand allocation for both compute
and memory

* Co-locate process resources when possible
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Distributed NrOS (DiNOS) Architecture

The data plane consists of
one or more dkernels (data
kernels) based on NrOS [1].
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0 Log replicas (similar to NR
[2]) are used to keep process
state consistent.

e Dkernel resources (cores,
slices of memory) are

assigned to processes by the
control plane. ............ ............
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e Control operations are
forwarded via RPCs using
shared memory queues.
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The control plane consists of
one ckernel (control kernel)
based on NrOS [1] and a
scheduler built using DCM
(Declarative Cluster
Management) [3].
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Q The scheduler uses DCM
to encode the scheduling
problem as an optimization
problem.
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e A process (gold) may be
assigned to use resources

from different dkernels.

Figure 2. Architecture of distributed OS for disaggregated coherent memory.

Preliminary Microbenchmark: map ()
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Figure 3. Throughput of map () in million operations per second for 1, 2, and 4

dkernels for DiNOS (distributed NrOS) compared to NrOS with 1, 2, and 4 log replicas
as the number of data plane cores (x-axis) increases.
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Design and Implementation

<& Prioritize Usability

* Run largely unmodified Unix binaries
* Does not require bespoke framework
* Transparent scaling (application hints?)

< Implementation

* Written in Rust, extends NrOS [1]}
* Emulated: QEMU & QEMU shared memory

Future Work

o Optimization & benchmarking
o Dynamic log replication
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